Let Δ = \(\begin{vmatrix} 1 & 1 & 1+3x\\ 1+3y & 1 & 1 \\ 1 & 1+3z & 1\end{vmatrix}\)
On applying R2 → R2 - R3 and R3 → R3 - R1
Δ = \(\begin{vmatrix} 1 & 1 & 1+3x\\ 3y & -3z & 0 \\ 1 & 3z & -3x\end{vmatrix}\)
On applying along R1, we get
Δ = 9xy - 0] + (1 + 3x) (9yz - 0)
= 9zx + 9xy + 9yz + 27xyz = 9(3xyz + yz + zx + xy)
= 9(3xyz + yz + zx + xy)
= 9(3xyz + xy + yz + zx)
Hence proved