

Expanding along C1 we get
= (b - a) (c - a) (a2 + b2 + c2) [- b(b + a) + c(c + a)]
= (b - a) (c - a) (a2 + b2 + c2) [- b2 - ab + c2 + ac]
= (b - a) (c - a) (a2 + b2 + c2) [(c2 - b2) + (ca - ab)]
= (b - a) (c - a) (a2 + b2 + c2) [(c - b) (c + b) + a(c - b)]
= (b - a) (c - a) (a2 + b2 + c2) (c - b) (a + b + c)
= (a - b) (b - c) (c - a) (a + b + c) (a2 + b2 + c2) = RHS.
Hence proved