Correct option is (1) 0
\((1-x)\left[(1-x)\left(1+x+x^2\right)\right]^{2007}\)
\(=(1-x)\left(1-x^3\right)^{2007}\)
\(=\left(1-x^3\right)^{2007}-x\left(1-x^3\right)^{2007}\)
[\(\left(1-x^3\right)^{2007}\) contains \(3 \lambda\) types of exponents while \(x\left(1-x^3\right)^{2007}\) will have \((3 \lambda+1)\) type while 2012 is \((3 \lambda+2)\) type] that is not possible \(\Rightarrow 0\)
Coefficient of \(x^{2012}\ \text{in} \left(1-x^3\right)^{2007}=0\)
Coefficient of \(x^{2011}\ \text{in} \left(1-x^3\right)^{2007}=0\)
\(\Rightarrow \text{Coefficient of} \ x^{2012}\text{ in} (1-x)^{2008}\left(1+x+x^2\right)^{2007}=0\)