\(\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A+B}{2}\)
L.H.S :-
\(\frac{\sin A + \sin B}{\cos A + \cos B} \)
\(=\frac{2 \sin(\frac{A+B}{2})\cos(\frac{A-B}{2})}{2 \cos(\frac{A+B}{2})\cos(\frac{A-B}{2})}\) \(\left[ \because \sin A+ \sin B = 2 \sin (\frac{A+B}{2}) \cos(\frac{A-B}{2})\\
\cos A+ \cos B = 2 \cos(\frac{A+B}{2}) \cos(\frac{A-B}{2})\right]
\)
\(=\frac{\sin}{\cos}(\frac{A+B}{2})\)
\(=\tan(\frac{A+B}{2})\)
= R.H.S