Correct option is (1) \(\mathbb{R}\)
\(\mathrm{f}(\mathrm{x})=In\ \mathrm{x}\)
\(g(x)=\frac{x^{4}-2 x^{3}+3 x^{2}-2 x+2}{2 x^{2}-2 x+1}\)
\(D_{g} \in R\)
\(\mathrm{D}_{\mathrm{f}} \in(0, \infty)\)
For \(\mathrm{D}_{\mathrm{fog}} \Rightarrow \mathrm{g}(\mathrm{x})>0\)
\(\frac{x^{4}-2 x^{3}+3 x^{2}-2 x+2}{2 x^{2}-2 x+1}>0\)
\(\Rightarrow x^{4}-2 x^{3}+3 x^{2}-2 x+2>0\)
Clearly \(\mathrm{x}<0\) satisfies which are included in option (1) only.