Correct option is (2) \(2\left(\log _{\mathrm{e}} 2\right)^{2}-1\)
\(y d y=(x d y-y d x) \sin \left(\frac{x}{y}\right)\)
\(\frac{d y}{y}=\left(\frac{x d y-y d x}{y^{2}}\right) \sin \left(\frac{x}{y}\right)\)
\(\frac{d y}{y}=\sin \left(\frac{x}{y}\right) d\left(-\frac{x}{y}\right)\)
\(\Rightarrow \quad \ell n y=\cos \frac{x}{y}+C\)
\( \mathrm{x}(1)=\frac{\pi}{2} \Rightarrow 0=\cos \frac{\pi}{2}+\mathrm{C} \Rightarrow \mathrm{C}=0\)
\(\ell \text { ny }=\cos \frac{x}{y} \)
\( \text { but } y=2 \Rightarrow \cos \frac{x}{2}=\ell n 2 \)
\(\cos \mathrm{x} =2 \cos ^2 \frac{x}{2}-1 \)
\(=2(\operatorname{\ell n} 2)^2-1\)