Correct option is (1) 118
\(f(x)=\frac{42^{x}+16}{2.2^{2 x}+16.2^{x}+32}\)
\(f(x)=\frac{2\left(2^{x}+4\right)}{2^{2 x}+8.2^{x}+16}\)
\(f(x)=\frac{2}{2^{x}+4}\)
\(f(4-x)=\frac{2^{x}}{2\left(2^{x}+4\right)}\)
\(\mathrm{f}(\mathrm{x})+\mathrm{f}(4-\mathrm{x})=\frac{1}{2}\)
So, \( f\left(\frac{1}{15}\right)+f\left(\frac{59}{15}\right)=\frac{1}{2}\)
Similarly \(=f\left(\frac{29}{15}\right)+f\left(\frac{31}{15}\right)=\frac{1}{2}\)
\(\mathrm{f}\left(\frac{30}{15}\right)=\mathrm{f}(2)=\frac{2}{2^{2}+4}=\frac{2}{8}=\frac{1}{4} \)
\( \Rightarrow 8\left(29 \times \frac{1}{2}+\frac{1}{4}\right)\)
\(\Rightarrow 118\)