Correct option is: (2) 63
\((1920-1)^{1919}={ }^{1919} \mathrm{C}_{0}(1920)^{1919}-{ }^{1919} \mathrm{C}_{1}(1920)^{1918}+\ldots .\ldots { }^{1919} \mathrm{C}_{1918}(1920)^{1}-{ }^{1919} \mathrm{C}_{1919}{ }^{1}\)
Last two digits \({ }^{1919} \mathrm{C}_{1918}(1920)-1\)
= 3684479