Correct option is: (2) \(\frac{4 \pi}{3}\)
Diff. w.r.t. x
\(\mathrm{g}(\mathrm{x})=1-\mathrm{xg}(\mathrm{x})\)
\(g(x)=\frac{1}{1+x}\)
so \(\frac{d y}{d x}-y \tan x=2 \sec x\)
\(I F=e^{-\int \tan d x}=e^{\log \cos x}=\cos x\)
solution of D.E.
\(y \cos x=\int 2 d x+c\)
\(y \cos x=2 x+c\)
y(0) = 0
\(\mathrm{c}=0\)
\(y=\frac{2 x}{\cos x}\)
\(\mathrm{y}=2 \mathrm{x} \sec \mathrm{x}\)
\(\mathrm{y}\left(\frac{\pi}{3}\right)=2 \cdot \frac{\pi}{3} \cdot 2=\frac{4 \pi}{3}\)