The given points are A(1, 2, 7), B (2, 6, 3) and C(3, 10, −1).
vector AB = (2i + 6j + 3k) - (i + 2j + 7k) = i + 4j - 4k
⇒ | vector AB| = √(1 + 16 + 16) = √33
vector BC = (3i + 10j - k) - (2i +6j + 3k) = i + 4j - 4k
⇒ |vector BC| = √(1 + 16 + 16) = √33
and vector AC = (3i + 10j - k) - (i + 2j + 7k) = 2i + 8j - 8k
⇒|vector AC| = √(4 + 64 + 64) = √132 = 2√33
|vector AC| = |vector AB| + |vector BC|
Hence, the given points A, B and C are collinear.