Let A = 2i - j + k B = i - 3j - 5k and C = 3i - 4j - 4k
vector AB = (i - 3j - 5k) - (2i - j + k) = -i - 2j - 6k
⇒ |vector AB| = √(1 + 4 + 36) = √41
vector BC = (3i - 4j - 4k) - (i - 3j - 5k) = 2i - j + k
⇒ |vector BC| = √(4 + 1 + 1) = √6
and vector AC = (3i - 4j - 4k) - (2i - j + k) = i - 3j - 5k
⇒|vector AC| = √(1 + 9 + 25) = √35
∴ |vector AB|2 = |vector AC|2 + |vector BC|2
Hence, ABC is a right angled triangle.