Answer: (c) = 360 cm3
Let a = 9 cm, b = 12 cm, c = 15 cm. Then,
s = \(\frac{a+b+c}{2} = \frac{9+12+15}{2}\) = 18 cm
∴ Area of the base = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{18(18-9)(18-12)(18-15)}\)
= \(\sqrt{18\times 9 \times 6\times 3}\) = 54 cm2
∴ Volume of the tetrahedron
= \(\frac{1}{3}\) × (Area of the base × height)
= \(\frac{1}{3}\) × 54 × 20 cm3
= 360 cm3