Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.8k views
in Areas Related To Circles by (23.8k points)
closed by

Let S1 be a square of side a. Another square S2 is formed by joining the mid-points of the sides of S1. The same process is applied to S2 to form yet another square S3 and so on . If A1, A2, A3, ......... be the areas and P1, P2, P3, .......... be the perimeters of S1, S2, S3, ............ respectively, then what does the ratio 

\(\frac{P_1+P_2+P_3+...}{A_1+A_2+A_3+...}\) equal to ?

1 Answer

+1 vote
by (22.9k points)
selected by
 
Best answer

Let each side of S1 = a units

∴ Each side of S2\(\sqrt{\big(\frac{a}{2}\big)^2+\big(\frac{a}{2}\big)^2}\) = \(\frac{a}{\sqrt{2}}\) units

⇒ Each side of S3\(\sqrt{\big(\frac{a}{2\sqrt{2}}\big)^2+\big(\frac{a}{2\sqrt{2}}\big)^2}\) = \(\sqrt{\frac{2a^2}{8}}\) = \(\frac{a}{2}\) units

⇒ Each side of S4\(\sqrt{\big(\frac{a}{4}\big)^2+\big(\frac{a}{4}\big)^2}\)  = \(\sqrt{\frac{2a^2}{16}}\) = \(\frac{a}{2\sqrt{2}}\) unit and so on.

∴ P1 + P2 + P3 + P4 + ......... = 4a +\(\frac{4a}{\sqrt{2}}\) + \(\frac{4a}{2}\) + \(\frac{4a}{2\sqrt{2}}\) +...

This is an infinite GP with 1st term 4a and common ratio \(\frac{1}{\sqrt{2}}\)

∴ P1 + P2 + P3 + P4 + ......... = \(\frac{4a}{1-\frac{1}{\sqrt{2}}}\) = \(\frac{4a\times \sqrt{2}}{(\sqrt{2}-1)}\) = \(\frac{4 \sqrt{2}a}{(\sqrt{2}-1)}\)

(Sum of infinite GP = \(\frac{First\,term}{1-Common\,Ratio}\) )

Similarly, A1 + A2 + A3 + A4 + ......... = a\(\frac{a^2}{2}\) +\(\frac{a^2}{4}\)\(\frac{a^2}{8}\)+...

\(\frac{a^2}{1-\frac{1}{2}}\) = 2a

\(\frac{4+2\sqrt{2}}{a}\) 

\(\frac{2(2+\sqrt{2})}{a}\).

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...