Let each side of S1 = a units

∴ Each side of S2 = \(\sqrt{\big(\frac{a}{2}\big)^2+\big(\frac{a}{2}\big)^2}\) = \(\frac{a}{\sqrt{2}}\) units
⇒ Each side of S3 = \(\sqrt{\big(\frac{a}{2\sqrt{2}}\big)^2+\big(\frac{a}{2\sqrt{2}}\big)^2}\) = \(\sqrt{\frac{2a^2}{8}}\) = \(\frac{a}{2}\) units
⇒ Each side of S4 = \(\sqrt{\big(\frac{a}{4}\big)^2+\big(\frac{a}{4}\big)^2}\) = \(\sqrt{\frac{2a^2}{16}}\) = \(\frac{a}{2\sqrt{2}}\) unit and so on.
∴ P1 + P2 + P3 + P4 + ......... = 4a +\(\frac{4a}{\sqrt{2}}\) + \(\frac{4a}{2}\) + \(\frac{4a}{2\sqrt{2}}\) +...
This is an infinite GP with 1st term 4a and common ratio \(\frac{1}{\sqrt{2}}\)
∴ P1 + P2 + P3 + P4 + ......... = \(\frac{4a}{1-\frac{1}{\sqrt{2}}}\) = \(\frac{4a\times \sqrt{2}}{(\sqrt{2}-1)}\) = \(\frac{4 \sqrt{2}a}{(\sqrt{2}-1)}\)
(Sum of infinite GP = \(\frac{First\,term}{1-Common\,Ratio}\) )
Similarly, A1 + A2 + A3 + A4 + ......... = a2 + \(\frac{a^2}{2}\) +\(\frac{a^2}{4}\)+ \(\frac{a^2}{8}\)+...
= \(\frac{a^2}{1-\frac{1}{2}}\) = 2a2


= \(\frac{4+2\sqrt{2}}{a}\)
= \(\frac{2(2+\sqrt{2})}{a}\).