Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
13.8k views
in Trigonometry by (47.6k points)
closed by

If cot α = \(\frac{1}{2}\), sec β = \(\frac{-5}{3}\), where π < α < \(\frac{3\pi}{2}\) and \(\frac{\pi}{2}\) < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.

1 Answer

+1 vote
by (48.0k points)
selected by
 
Best answer

Given that cot α = \(\frac{1}{2}\) where π < α < \(\frac{3\pi}{2}\)(i.e,. α lies in third quadrant)

tan α = \(\frac{1}{\frac{1}{2}}\)= 2 [∵ In 3rd quadrant tan α is positive] 

Also given that sec β = \(\frac{-5}{3}\) where \(\frac{\pi}{2}\) < β < π (i.e., β lies in second quadrant cos β and tan β are negative)

tan (α + β) = \(\frac{2}{11}\) which is positive.

α + β terminates in first quandrant.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...