(i) y3 – 27
= y3 – 33
Comparing this with a3 – b3 , we have a = y and b = 3
a3 – b3 = (a + b) (a2 + ab + b2 )
y3 – 33 = (y – 3)(y2 + (y) (3) + 32 ) = (y – 3) (y2 + 3y + 9)
y3 – 27 = (y – 3) (y2 + 3y + 9)
(ii) 3b3 + 192c3
= (3 × b3) – (3 × 4 × 4 × 4 × c3) = 3(b3 – 43 c3)
= 3(b3 – (4c)3 )
Comparing b3 – (4c)3 with a3 – b3 we have a = b and b = 4c
a3 – b3 = (a – b) (a2 + ab + b2)
3(b3 – (4c)3) = 3[(b – 4c)(b2 + (b)(4c) + (4c)2)]
= 3[(b – 4c)(b2 + 4bc + 42 c2)]
3b3 – 192c3 = 3 [(b – 4c) (b2 + 4bc + 16c2)]
(iii) -16y3 + 2x3
= 2x3 – 16y3 [∵ Addition is commatative]
= 2(x3 – 8y3) = 2(x3 – 23y3)
= 2(x3 – (2y)3)
Comparing x3 – (2y)3 with a3 – b3 we have a = x and b = 2y
a3 – b3 = (a – b)(a2 + ab + b2)
2[x3 – (2y)3] = 2[(x – 2y) (x2 + (x) (2y) + (2y)2)]
= 2[(x – 2y) (x2 + 2xy + 22 y2)]
-16y3 + 2x3 = 2[(x – 2y)(x2 + 2xy + 4y2)]
(iv) x3y3 – 73
= (xy)3 – 73
Comparing with a3 – b3 we have a = xy and b = 7
a3 – b3 = (a – b)(a2 + ab + b2)
(xy)3 – 73 = (xy – 7) ((xy)2 + (xy) (7) + 72)
x3y3 – 73 = (xy – 7) (x2y2 + 7xy + 49)
(v) c3 – 27 b3 a3
= c3 – 33b3 a3 = c3 – (3ba)3
Comparing this with a3 – b3 we have a = x and b = 3ba
a3 – b3 = (a – b)(a2 + ab + b2)
∴ c3 – (3ba)3 = (c – 3ba) (c2 + (c) (3ba) + (3ba)2)
= (c – 3ba) (c2 + 3bac + 32 b2a2)
c3 – 27b3a3 = (c – 3ab) (c2 + 3bac + 9a2b2)