Correct Answer is \(\frac{\pi}{6}\)
Now, let x = \(tan^{-1}\left(tan\frac{7\pi}{6}\right)\)
⇒ tan x =tan ( \(\frac{7\pi}{6}\))
Here range of principle value of tan is [ \(-\frac{\pi}{2},\frac{\pi}{2}\)]
⇒ x = \(\frac{7\pi}{6}\)∉ [ \(-\frac{\pi}{2},\frac{\pi}{2}\)]
Hence for all values of x in range [\(-\frac{\pi}{2},\frac{\pi}{2}\) ] ,the value of
\(tan^{-1}\left(tan\frac{13\pi}{6}\right)\) is
⇒ tan x =tan (π + \(\frac{\pi}{6}\) ) (\(\because\) tan ( \(\frac{7\pi}{6}\))= tan (π +\(\frac{\pi}{6}\)) )
⇒ tan x =tan ( \(\frac{\pi}{6}\)) (\(\because\) tan (π+ θ)= tan θ)
⇒ x =\(\frac{\pi}{6}\)