(i) 2x2 + 3x + k = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
2x2 + 3x + k = 0
⇒ D = 9 – 4 × 2 × k
⇒ 9 – 8k ≥ 0
⇒ k ≤ 9/8
(ii) 2x2 + kx + 3 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
2x2 + kx + 3 = 0
⇒ D = k2 – 4 × 2 × 3
D ≥ 0
⇒ k2 – 24 ≥ 0
⇒ (k + 2√6)(k – 2√6) ≥ 0
Thus, k ≤ - 2√6 or k ≥ 2√6
(iii) 2x2 - 5x - k = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
2x2 - 5x - k = 0
⇒ D = 25 – 8k
D ≥ 0
⇒ 25 – 8k ≥ 0
⇒ k ≤ 25/8
(iv) kx2 + 6x + 1 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
kx2 + 6x + 1 = 0
⇒ D = 36 – 4k
⇒ 36 – 4k ≥ 0
⇒ k ≤ 9
(v) x2 - kx + 9 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
x2 - kx + 9 = 0
⇒ D = k2 – 36
⇒ k2 – 36 ≥ 0
⇒ (k – 6)(k + 6) ≥ 0
⇒ k ≥ 6 or k ≤ - 6