(i) 2x2 + kx + 2 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
2x2 + kx + 2 = 0
⇒ D = k2 – 4 × 4
⇒ k2 – 16 ≥ 0
⇒ (k + 4)(k – 4) ≥ 0
⇒ k ≥ 4 or k ≤ -4
(ii) 3x2 + 2x + k = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
3x2 + 2x + k = 0
⇒ D = 4 – 12k
⇒ 4 – 12k ≥ 0
⇒ k ≤ 1/3
(iii) 4x2 - 3kx + 1 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
4x2 - 3kx + 1 = 0
⇒ D = 9k2 – 16
⇒ 9k2 – 16 ≥ 0
⇒ (3k – 4)(3k + 4) ≥ 0
⇒ k ≤ -4/3 or k ≥ (4/3)
(iv) 2x2 + kx - 4 = 0
For a quadratic equation, ax2 + bx + c = 0,
D = b2 – 4ac
If D ≥ 0, roots are real
2x2 + kx - 4 = 0
⇒ D = k2 + 4 × 2 × 4 = k2 + 32
Thus, D is always greater than 0 for all values of k.