The given system of equations can be written as
2x - 3y = 7
⇒2x - 3y - 7 = 0 ….(i)
and (a + b)x - (a + b – 3)y = 4a + b
⇒(a + b)x - (a + b – 3)y - 4a + b = 0 ….(ii)
These equations are of the following form:
a1x+b1y+c1 = 0, a2x+b2y+c2 = 0
Here, a1 = 2, b1= -3, c1 = -7 and a2 = (a + b), b2 = -(a + b - 3), c2 = -(4a + b)
For an infinite number of solutions, we must have:

⇒ 2(4a + b) = 7(a + b) and 3(4a + b) = 7(a + b - 3)
⇒ 8a + 2b = 7a + 7b and 12a + 3b = 7a + 7b - 21
⇒ 4a = 17 and 5b = 11
∴ a = 5b …….(iii)
and 5a = 4b – 21 ……(iv)
On substituting a = 5b in (iv), we get:
25b = 4b – 21
⇒21b = -21
⇒b = -1
On substituting b = -1 in (iii), we get:
a = 5(-1) = -5
∴a = -5 and b = -1.