Correct Answer - Option 1 : x
2 + y
2 = 2z
3 + z
2 - 2
Given:
Surface is f = \(\frac{z(x+y)}{c(3z+1)}\)
Lagrange's subsidiary equation are \(\frac{\partial x}{\partial f}=\frac{\partial y}{\partial f}=\frac{\partial z}{\partial f}\)
⇒ \(\frac{dx}{\frac{z}{c(3z+1)}}=\frac{dy}{\frac{z}{c(3z+1)}}=\frac{dz}{\frac{x+y}{c(3z+1)^2}}\)
⇒ \(\frac{dx}{z}=\frac{dy}{z}=\left(\frac{3z+1}{x+y}\right)dz\)
Taking 1st and 2nd : \(\frac{dx}{z}=\frac{dy}{z}\)
⇒ \(\int dx=\int dy+c_1\)
⇒ x - y = c1
Again using (i), \(\frac{dx+dy}{2z}=\left(\frac{3z+1}{x+y}\right)dz\)
\(\int (x+y)(dx+dy)=\int(6z^2+2z)dz+c_2\)
⇒ \(\frac{(x+y)^2}{2}=2z^3+z^2+c_2\)
or (x + y)2 = 4z3 + 2z2 + c2
x2 + y2 + 2xy = 4z3 + 2z2 + c2
1 + 2xy = 4(1)3 + 2(1)2 + c2
⇒ 2xy = 5 + c2
putting the value of 2xy from equation (ii) into equation (iii),
\(1-c^2_1=5+c_2\)
⇒ \(c_1^2+c_2+4=0\)
\((x-y)^2+(x+y)^2-4z^3-2z^2+4=0\)
\(2(x^2+y^2)=2(2z^3+z^2-2)\) or
\(x^2+y^2=2z^3+z^2-2\)