Correct Answer - Option 1 : 10 J/m
3
Concept:
Strain energy stored in the bar \(\frac{1}{2}\times P\times \delta =\frac{1}{2}\times P\times \frac{PL}{AE}~\)
Strain energy density or strain energy per unit volume
\(U=\frac{1}{2}\times \frac{{{P}^{2}}L}{AE\times AL}=\frac{1}{2}\times {{\left( \frac{P}{A} \right)}^{2}}\times \frac{1}{E}\)
\(U=\frac{{{\sigma }^{2}}}{2E}\)
Calculation:
Given data, P = 200 N, A = 10 mm × 10 mm = 100 mm2
E = 200 GPa = 200 × 103 MPa
\(\sigma =\frac{200}{100}=2~MPa\)
Strain energy density
\(U={{\left( \frac{200}{100} \right)}^{2}}\times \frac{1}{2\times 200\times {{10}^{3}}}=10~J/m{{m}^{3}}\)