Concept:
In a source-free region
\({\vec \nabla ^2}\phi = 0\)
Application: As we know, In a source-free region \({\vec \nabla ^2}\phi = 0\)
\(\vec \nabla \phi = 4{\rm{x}}{{\rm{\hat a}}_{\rm{x}}} + 2{\rm{y}}{{\rm{\hat a}}_{\rm{y}}} + 2{\rm{cz}}{{\rm{\hat a}}_{\rm{z}}}\)
And \(\vec \nabla \cdot \left( {\vec \nabla \phi } \right) = 4 + {\rm{z}} + 2{\rm{c}}\)
\(\Rightarrow {\vec \nabla ^2}\phi = 6 + 2{\rm{c}} = 0\)
Thus,
\({\rm{c}} = - 3\)