Correct Answer - Option 1 : 323
Given:
a = (√5 + 2)/(√5 – 2)
b = (√5 – 2)/( √5 + 2)
Concept:
First rationalize the values of ‘a’ and ‘b’ and then proceed.
Formula used:
(a + b)2 = a2 + b2 + 2ab
(a + b)(a – b) = a2 – b2
Calculation:
∵ a = (√5 + 2)/(√5 – 2)
⇒ a = [(√5 + 2)( (√5 + 2)]/[(√5 – 2)(√5 + 2)]
⇒ a = [(√5 + 2)2]/[(√5)2 – (2)2]
⇒ a = [5 + 4 + 4√5]/(5 – 4)
⇒ a = (9 + 4√5)
Similarly;
b = (√5 – 2)/( √5 + 2)
⇒ b = [(√5 – 2)(√5 - 2)]/[(√5 + 2)(√5 – 2)]
⇒ b = [(√5 – 2)2]/[(√5)2 – (2)2]
⇒ b = [5 + 4 – 4√5]/(5 – 4)
⇒ b = (9 – 4√5)
Now, a2 + b2 + ab = (a + b)2 – ab
⇒ (9 + 4√5 + 9 – 4√5)2 – [(9 + 4√5)( 9 – 4√5)]
⇒ (18)2 – [(9)2 – (4√5)2]
⇒ 324 – (81 – 80)
⇒ 324 – 1
⇒ 323
∴ The value of the given expression is 323.