Let P1(x1, y1) be a point on a curve y = x3
Now, dy/dx = 3x2
Slope of the tangent at P1 = m1 = 3x12
Equation of the tangent at P1 is
y – y1 = 3x12(x – x1)
⇒ x3 – x13 = 3x12 (x – x1)
⇒ x3 – 3x12 x – 2x13 = 0
⇒ (x – x1)(x2 + x x1 – 2x12) = 0
⇒ (x – x1)(x – x1)(x + 2x1) = 0
⇒ x = x1, – 2x1
⇒ x = – 2x1
Thus, x2 = –2x1, y2 = x23 = – 8x13
Therefore, P2 = (x2, y2) = (–2x1, –8x13)
Now, we find P3.
Equation of tangent at P2 is
⇒ y – y2 = 3x22(x – x2)
⇒ x3 – x23 = 3x22 (x – x2)
⇒ (x – x2)(x – x2)(x + 2x2) = 0
⇒ x = – 2x2
Thus, x3 = – 2x2 = –2. – 2x1 = 4x1
and y3 = x23 = (4x1)3 = 64x13
Therefore, P3 = (x3, y3) = (4x1, 64x13)
The abscissae of P1, P2, P3, ... are x1, – 2x1, 4x1, – 8x1
Which are in G.P with a common ratio -2.
Now, ar(ΔP1P2P3)
