Given
y = −p2x2 + 5 px − 4 (1)
y = 1/(1− x) (2)
Chord touches curve (2) at x = 2 which gives y = −1.
Let (x1, y1) and (x2, y2) are ends of chord.
Touching point is middle point ((x1 + x2)/2, (y1 + y2)/2)
(x1 + x2)/2 = 2; x1 + x2 = 4
and y1 + y2 = -2
(x1, y1) and (x2, y2) satisfy the curve.
Therefore,
y1 = −p2x21 + 5px1 − 4 (3)
and y2 = −p2x22 + 5px2 − 4 (4)
Subtracting Eq. (4) from Eq. (3), we get
y1 − y2 = − p2x21 + 5px1 − 4 + p2x22 − 5px2 + 4
⇒ y1 − y2 = −p2(x21 − x22) + 5p(x1 − x2)
⇒ (y1 - y2)/(x1 - x2) = − p2(x1+ x2) + 5p = −4p2 + 5p (5)
Again, (dy/dx)at x=2 = 1/(1 - x)2 = 1/1
Therefore, from Eq. (5), we get
1 = −4p2 + 5p
⇒ 4p2 − 5p + 1 = 0
⇒ p = 1, 1/4