Let \(\frac{4x+1}{(x-2)(x+1)}\) = \(\frac{A}{x-2}+\frac{B}{x+1} ...(1)\)
Multiply both sides by (x – 2) (x + 1) we get
4x + 1 = A(x + 1) + B(x – 2) … (2)
Put x = -1 in (2) we get
4(-1) + 1 = A(-1 + 1) + B(-1 – 2)
-4 + 1 = A(0) + B(-3)
-3 = B(-3)
B = \(\frac{-3}{-3}\) = 1
Put x = 2 in (2) we get
4(2) + 1 = A(2 + 1) + B(2 – 2)
8 + 1 = A(3) + B(0)
9 = 3A
A = 3
Using A = 3, B = 1 in (1) we get
\(\frac{4x+1}{(x-2)(x+1)}\) = \(\frac{3}{x-2}+\frac{1}{x+1} \)