Here the denominator has repeated factors. So we write
\(\frac{1}{(x-1)(x+2)^2}\) = \(\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^2}...(1)\)
Multiply both sides by (x – 1) (x + 2)2 we get
1 = A(x + 2)2 + B(x – 1) (x + 2) + C(x – 1) … (2)
Put x = 1 in (2) we get
1 = A(1 + 2)2 + B(1 – 1) (1 + 2) + C(1 – 1)
1 = A(32) + 0 + 0
1 = 9A
A = \(\frac{1}{9}\)
Put x = -2 in (2) we get
1 = A(-2 + 2)2 + B(-2 – 1) (-2 + 2) + C(-2 – 1)
1 = 0 + 0 + C(-3)
C = \(\frac{-1}{3}\)
From (2) we have
1 = A(x + 2)2 + B(x – 1) (x + 2) + C(x – 1)
0x2 + 1 = A(x2 + 4x + 4) + B(x2 + x – 2) + C(x – 1)
Equating coefficient of x2 on both sides we get
0 = A + B
0 = \(\frac{1}{9}\) (∴ A = \(\frac{1}{9}\))
B = \(-\frac{1}{9}\)
Using A = \(\frac{1}{9}\), B = \(-\frac{1}{9}\), C = \(\frac{-1}{3}\) in (1) we get,
