Let L1: (x – x1)/a1 = (y – y1)/b1 = (z – z1)/c1
and L2: (x – x2)/a2 = (y – y2)/y2 = (z – z2)/c2
are perpendicular or, if a1a2 + b1b2 + c1c2 = 0
and parallel if a1/a2 = b1/b2 = c1/c2
If the lines L1 : x = ay + b, z = cy + d and L2 : x = x'y + b', z = c'y + d' are perpendicular, then
(a) aa' + cc' = 0
(b) aa' + cc' = –1
(c) aa' – cc' = 0
(d) aa' – cc' = 1