Correct Answer - Option 3 : 12
Concept:
If f(x) = a0xn + a1xn-1 + a2xn-2 + … an is a polynomial of degree ‘n’, then
\({{\rm{\Delta }}^n}f\left( x \right) = \left[ {\left( {n!} \right) \cdot h \cdot {a_0}} \right]\;\& \;{{\rm{\Delta }}^{n + r}}f\left( x \right) = 0\;for\;r = 1,\;2,\;3 \ldots\)
Where h is the step size
Calculation:
Given polynomial is y = 2x3 – 3x2 + 3x – 10 & we have to calculate Δ3y where Δ is forward difference operator.
So Δ3y = (n!) (a0)(h) = (3!)⋅(2)h = 12h
⇒ Δ2y = 12h
Step size = 1 {since it is not given so take it as 1}
⇒ Δ
2y = 12